原子核は陽子が電子で結び付けられた状態だ。プラスとマイナスの電荷が軌道上の電子をゆるくつなぎとめている。だが、これだけでは電子軌道が飛び飛びの半径を持つことは説明できない。
量子跳躍は、現状の量子力学では自然現象と考えられているが、その原因には言及されていない。じつは量子跳躍と類似した現象がある。太陽系だ。太陽を中心とした惑星の公転半径は、数列で現される。ティティウス・ボーデの法則で知られる。
a / AU = 0.4 + 0.3 × 2n
aは惑星の平均軌道半径、AUは地球と太陽との距離。wikipediaより
太陽系の惑星がなぜこのような軌道を取るのか? 公転しているかさえ、現在の天文学では解明できていない。しかし、電気的地球科学では、公転の動力は太陽を貫くビルケランド電流によるローレンツ力、惑星の軌道が安定しているのは、太陽振動が起こしている定在波のためと説明している。
惑星と軌道電子は、太陽・原子核の持つ電荷に対して、電気引力・斥力が働くため、一定の距離を保っている。だが、電子軌道を飛び飛びの距離に束縛する力は明らかになっていなかった。太陽振動に相当する力が原子核にもあるのだ。
太陽は星間物質を飲み込んで、約5分の周期で振動している。太陽のエネルギーは星間物質がもたらす電気エネルギーだ。では、陽子や電子は外部から電荷のエネルギーを得ているのだろうか? 一般には、陽子、電子は素電荷と呼ばれ、電荷は最初から備わっている性質と考えられている。ところが最近の研究では、ガンマ線を吸収した原子核から再びガンマ線が放射されていることがわかってきた。シザースモードだ。
シザースモードは、比較的大きな原子核で見られる現象だが、陽子1個でも起きている可能性が高い。またガンマ線は透過力が弱いので、物質の奥深くまで入り込むことができない。そこで考えられるのがニュートリノだ。ニュートリノはほかの物質と相互作用をほとんどしない粒子と考えられている。ところがニュートリノは発生した瞬間から光速で移動する。ニュートリノは電磁波なのだ。陽子と電子が離れるとき、くっつくときにニュートリノは発生する。陽子がわずかに凹むとき、窪みが戻るときに発生する電界のパルスがニュートリノだ。
電磁波は粒子を媒介として進む、と電気的地球科学では説明している。ニュートリノの密度は地表で1秒間に1cm2あたり660億個(太陽ニュートリノだけで)ある。この高密度のニュートリノは、伝わっていく原子に電荷を供給していると考えられる。また、陽子の大きさが変化していることも確認されている。
陽子に供給される電荷が増えると陽子の直径が大きくなるが、そのとき、電荷のパルスが周囲に発生する。陽子振動が作る電荷の定在波が原子核の周囲には存在するのだ。この定在波の谷間に電子は落ち込んでいるというわけだ。
かなり長くなったが、量子跳躍の原因を説明してみた。現在の量子力学が説くように、波動関数などの数式が原子核を作っているわけではないことがわかったと思う。量子力学のもうひとつの間違いは、相対性理論と同じように数式に根拠を求めることだった。
さて、次の段階では原子核の構造に言及していくわけだが、原子核の構造は非常に複雑なルールを持つことがわかってきた。静的電子原子模型(Static Electron Atom Model)は、いまのところ、ここまで進んでいる。