Pages: << 1 ... 31 32 33 34 35 36 37 38 39 40 41 ... 59 >>

2018/07/10

Permalink 09:46:08, by admin Email , 21 words   Japanese (JP)
Categories: Classic Science

中性子はなぜ崩壊する③

ベータ崩壊にはニュートリノが働いているという予想だった。それを裏付ける論文があったので紹介しておく。

Evidence for Correlations Between Nuclear Decay Rates and Earth-Sun Distance
このグラフは、太陽と地球との距離の変化が36Cl-32Siの半減期に対して強い相関を持つという証拠だ。青い点が半減期、赤い線が地球と太陽の距離。36Clは大気中のアルゴンから宇宙線の衝突により生じる。半減期が約30万年でベータ崩壊―アルファ崩壊により32Siに変わる。この半減期を精密に調べると、地球と太陽との間の距離の変化に対応しているという。太陽ニュートリノがなんらかの働きをしているのではないかという推測がされている。太陽との距離が近いと半減期も短くなる。ニュートリノの濃度が濃くなるからだ。

同じような論文はほかにもあった。Power Spectrum Analysis of BNL Decay-Rate Data こちらは日照量との関係を指摘している。ニュートリノが原子核を維持する働きに関与しているのは確実なようだ。

2018/07/07

Permalink 10:15:15, by admin Email , 25 words   Japanese (JP)
Categories: Earth Science

水は地球内部と電離層から湧いてくる

氷河期と海水面の変動について書いた。氷河期には地球膨張が加速されるため、海底が拡大、海水の量が足りなくなり、海水面が低下する。膨張に伴い、地球内部から水が湧いてくるので、再び海水面は元に戻る。

Sea-level curve for the past 140,000 years, from Bard, et al., 1990.
地球内部から水はどのようにして供給されているのだろうか? ひとつ考えられるのは海底火山と熱水鉱床だ。プレートが生まれるとされている海嶺の深海では、高温高圧の熱水が沸いている。重金属を大量に含んだ熱水は、地殻にしみこんだ海水が熱せられ、再び上昇してきたと考えられている。しかし、水がマントルのカンラン石が相転移して作られているとすると、熱水鉱床の水は、マントルから湧いていると考えたほうが合理的だ。

川は山に始まり、海に注ぐ。川の水は陸地に雨が降って、集まったものとされる。しかし誰もその水の収支を確かめたものはいない。井戸を掘れば、水はどんどん湧いてくる。100mくらいではそれほどの温度ではないが、1000m掘ると高温の水が湧いてくる。高温の水は熱水鉱床と同じ起源ではないだろうか?

雨は海面や地表から蒸発した水が再び結露して降ってくると考えられている。雨雲は、核となる電子が発生することで作られる。高エネルギー宇宙線が大気に突入すると大量のミュオン、ニュートリノなどを発生させる。1個の陽子が超光速で突入すると数百億個のミュオン、ニュートリノが発生する。ミュオンは崩壊して電子(-+)になる。また、地表からもマントル由来の電子が電離層に向けて移動している。大気電流だ。

ここで水はH2O、酸素に水素が結合したものであることを思い出してほしい。水素は陽子2個、それが電子2個で酸素原子に結合している。地球大気はミュオン核融合でできた、で指摘した。

2CO2 + u(-) -> 2N2 + O2

この割合では、窒素が66%、酸素が33%になるはずが、78%、20%となっている。酸素がどこかに行っているのだ。酸素が水素と電子に出会えば、水になる。もし、地表から大量の電子が放出され、電位差が増えると電離層のプラスを引き付ける。電離層には大量のプロトン、つまり水素原子が含まれている。プロトンが大気に流れ込み、地表からの電子と出会うと、周囲の酸素に結びついて水になる。雨雲の発生だ。

O3 + 2H+ + 2e- -> O2 + H2O

オゾン層は通常、10km~50kmの高度に存在するが、地上でもオゾンは存在する。オゾンは太陽光線に含まれる紫外線により酸素分子が変化したものだ。日光の一番強い時期に、豪雨が発生しやすいことになる。

現在の西日本での豪雨は、地殻から大量に発生した電子によるものであると考えられる。九州、中国地方、関西は、まだ膨張している地域だからだ。マントルからの電子は、地震を引き起こす原因になるし、豪雨にもなる。

これは7月7日のひまわり8号の動画。沖縄の西の海上から雲が湧き上がっているところが良くわかる。九州から日本列島に沿って雲が流れているが、その下は環太平洋火山帯、地下にはマグマが存在する。

2018/07/05

Permalink 09:00:40, by admin Email , 2 words   Japanese (JP)
Categories: Earth Science

火星では重力のない状態が存在する

以前、火星の重力はどうなっているという記事を書いた。火星にはまばらな磁場があることから、重力の仕組みは地球と同じだろうと予測した。地殻内部からのELF、SLFの放射が電磁質量を生んでいるのだ。

ところが、火星では地球にはない現象があるようだ。

磁場がまばらということは重力を発生させる電磁波も均一ではない。火星の電離層は弱いので、電離層から反射される電磁波も弱くまばらであることが予想される。

火星で見つかる、反重力で浮いた石は、重力の出来ない隙間が存在することを示唆している。これは質量が重力を生むとする万有引力では考えられない現象だ。

2018/06/21

Permalink 11:36:12, by admin Email , 47 words   Japanese (JP)
Categories: Classic Science

中性子はなぜ崩壊する?②

中性子は陽子と電子が結合したものであるとした。同じ陽子と電子によって構成される水素原子がある。実際の水素原子は2個結合した分子だが、中性子と水素原子の質量は、こうなっている。有効桁は目をつぶってほしい。

中性子 n→ 1.674927471 x 10^-27kg
水素原子 H →1.6737236 x 10^-27kg

同じ陽子と電子でも、中性子のほうが少し重い。その差は、

n-H → 0.001203871 x 10^-27kg

となる。この差はなんだろう?

ところで、重水素は安定同位体で崩壊しない。

重水素 2H → 3.343583719 x 10^-27kg

重水素から、軌道電子1個と陽子2個の重さを引いてみる。

2H - e - 2p → 0.000749 x 10^-27kg

電子の重さは、

電子 e →0.00091093 x 10^-27kg

なので、ほぼ電子1個分の重さが出てくる。これが陽子と陽子を結合させている電子の重さなのだろうか?

そこで、三重水素と陽子3個の重さを比べてみた。

三重水素 3H →5.00827094 x 10^-27kg

軌道電子1個の重さを引く。

3H+ → 5.00736 x 10^-27kg

陽子3個は

3p → 5.017865484 x 10^-27kg

あれれ? 陽子3個のほうが重い!

3p - 3H+ → 0.010505484 x 10^-27kg

三重水素は、陽子が3個、電子3個で結合されていると考えられる。ではヘリウム3の重さはどうなっている?

3He → 5.00823789 x 10^-27kg
3He - 2e → 5.006416 x 10^-27kg

3H+ - 3He++ → 0.000944 x 10^-27kg

三重水素は、陽子3個が電子3個で、ヘリウム3は陽子3個が電子2個で結合している。その差は、ちょうど電子1個分になる。これは電気的地球科学で予想している原子核模型に合っている。三重水素はベータ崩壊するが、ヘリウム3は安定同位体だ。構造の違いは、三重水素が3角形をなしていて、ヘリウム3は真っ直ぐだ。

ここで、かなり飛躍的な予想をしてみる。

重水素は2個の陽子を電子が結び付けている。ニュートリノ放射を受けたとき、陽子内部で電界が伝わる。結合した電子を介してとなりの陽子にもニュートリノの電界は移動していく。このとき、電子を通り抜ける電界のパルスは真っ直ぐだ。ヘリウム3も陽子3個が直列につながっている。

三重水素でも陽子内部をニュートリノの電界のパルスは伝わるが、となりの陽子を結び付けている電子には角度がついている。そのため、電子内部には外側に向かう力が発生する。非常にエネルギーが高いニュートリノが入射した場合、電子を外側に弾き飛ばしてしまう。これがベータ崩壊だ。

ここまでくれば、中性子がなぜ崩壊するかは明らかだ。

陽子に入射したニュートリノが電子をはじき出してしまう。はじき出された電子はニュートリノのエネルギーを得て飛び去る。陽子が少し変形するので電子ニュートリノも発生する。

まだ、この考察には、なぜ3H<3pなのかという疑問もあるが、電界の再発生、ニュートリノによる電荷の供給という作用に矛盾はない。

うーん、しかしこれだと、①で予想したニュートリノの少ないほうが寿命が短いと矛盾する。困った。③へ続く。

2018/06/16

Permalink 10:23:18, by admin Email , 0 words   Japanese (JP)
Categories: Classic Science

中性子はなぜ崩壊する?①

中性子は約15分で陽子と電子に崩壊するが、重水素は崩壊しない。三重水素は崩壊してヘリウム3になるが、半減期は12年だ。この違いはどこからくるのだろうか? 一般にはクォークで説明されているが嘘くさいので、別の仕組みを考えてみた。「素粒子宇宙起源研究機構」の中性子寿命の精密測定から、どのようにして中性子の寿命を測定しているかを見てみる。

グラフ1:2つの寿命測定法によるこれまでの測定値のズレ。青は超冷中性子蓄積実験、赤は冷中性子ビーム実験による値。線はそれぞれの実験の精度を考慮した平均値で、帯の幅は平均値の不確かさを表す。

いずれも速度の遅い中性子を使い、片方は容器に溜め、もう片方は一定の速度で検知器を通過させて測定している。容器に溜めたほうが寿命は平均8秒短い。寿命の差は、容器から漏れ出した可能性があるとしている。それにしても、8秒の差が明確にあるのは、何か原因があるからではないか?

以前、中性子の崩壊は、2個の中性子が結合するからではないかと説明した。この仕組みでは、ビームと容器での寿命の差は出ない。やはりニュートリノが関係していると思われる。

陽子に結合した電子は励起状態であると予想した。中性子は回転すると磁場を周囲に作る。磁場にエネルギーをとられるため、電子は次第に励起状態から電荷ポテンシャルが落ちていく。陽子にミューニュートリノがぶつかると一部のエネルギーが電子に渡り、電荷ポテンシャルを上げる。

中性子を容器に溜めた場合とビームにして測定した場合を比較してみる。容器に溜めた場合は、一定面積に一定時間ニュートリノが通り過ぎる。ビームの場合は速度に比例する。ニュートリノに放射される量はビームのほうが多いと考えられる。雨が降っているとき、立ち止まっているより、走ったほうが身体に当たる雨粒は多くなる。中性子も移動している場合のほうがニュートリノに当たる確率が高い。陽子に結合した電子の励起状態は、ニュートリノにより供給される電界のエネルギーによって維持されている、と予想できる。

<< 1 ... 31 32 33 34 35 36 37 38 39 40 41 ... 59 >>

2025年October
Sun Mon Tue Wed Thu Fri Sat
 << <   > >>
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  

人間が作ったものをどのように壊すことができるかを合理的に考察するのが破壊学です。現代科学にターゲット絞って考えています。 『電気的地球科学』には、さらにくわしい解説があります。 このブログに書いてある内容を引用する場合は、出所を明記してください。
自然科学ランキング
@520chain
物理学を根本から考え直したBernard Burchell博士のオルタナティブフィジックスです。
科学史から見た量子力学の間違いには量子力学はどこで間違ったのかが考察されています。 アンドリュー・ホール氏のデイリープラズマでは山がどのようにしてできたかを詳細に考察しています。 日本人による相対性理論への疑問、現代科学のおかしな点をエッセイ風にまとめたページ。 物理の旅の道すがらはロシアの科学エッセイを日本語で読めます。

今日の電気的宇宙

さらにくわしく読みたい人のためにNOTEでまとめています。「電気的地球科学への招待」ぜひお読みください。

トムヴァンフランダーン博士の「重力の速さ」の考察をGoogleで翻訳してみました。

ロシアの「新しい物理学の概要」は、ちょっと違った視点を与えてくれます。

フリーエネルギー技術開発の特徴と種々相は興味深い現象がたくさん紹介されています。

Contents

Search

XML Feeds

free blog software